Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cancer Med ; 12(8): 9313-9321, 2023 04.
Article in English | MEDLINE | ID: covidwho-2239843

ABSTRACT

PURPOSE: SARS-CoV-2 vaccines cause acute ipsilateral lymph node swelling in an important proportion of vaccines. Thus far, no malignant lymphadenopathies have been reported in temporal context to vaccination in the ipsilateral draining lymph node areas. EXPERIMENTAL DESIGN: Prompted by two cases with unilateral axillary lymphomas that occurred ipsilaterally to prior SARS-CoV-2 vaccination, we systematically retrieved all B-cell non-Hodgkin lymphomas at two German University Medical Centers diagnosed before and after introduction of SARS-CoV-2 vaccines in Germany. Available lymphoma tissue (n=19) was subjected to next-generation immunosequencing of the IGH locus. Malignant clonotypes were mined in the CoVabDab database and published data sets from 342 uninfected individuals, 55 individuals 28 days after anti-SARS-CoV-2 vaccination and 139 individuals with acute COVID-19 together encompassing over 1 million CDR3 sequences in total. RESULTS: Of 313 newly diagnosed cases in the two centers and observation periods, 27 unilateral manifestations in the defined deltoid draining regions were identified. The majority thereof were diffuse large B-cell lymphomas (18 of 27 cases). Eleven unilateral cases were diagnosed in the era of SARS-CoV-2 vaccination and 16 in the control period before introduction of such vaccines. Of the 11 unilateral lymphomas that occurred during the vaccination period, ten had received a SARS-CoV-2 vaccine prior to lymphoma diagnosis. These cases were further evaluated. While left-sided were more frequent than right-sided lymphomas (19 vs 8 cases), no statistically significant association of vaccination site and laterality of the lymphoma manifestation was found. The unilateral lymphomas showed a normal range of B-cell receptors typically found in these lymphoma subtypes with no evidence for anti-SARS-CoV-2 sequences in the malignant clonotype. CONCLUSIONS: Together, we found no evidence that the current SARS-CoV-2 vaccines could serve as a trigger for lymphomagenesis in the draining lymph node areas of the deltoid region used for vaccination.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Lymphoma , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Lymphoma/pathology , Vaccination , Lymphoma, Non-Hodgkin/pathology
2.
Front Immunol ; 13: 822834, 2022.
Article in English | MEDLINE | ID: covidwho-2121569

ABSTRACT

Somatic hypermutation (SHM) is an important diversification mechanism that plays a part in the creation of immune memory. Immunoglobulin (Ig) variable region gene lineage trees were used over the last four decades to model SHM and the selection mechanisms operating on B cell clones. We hereby present IgTreeZ (Immunoglobulin Tree analyZer), a python-based tool that analyses many aspects of Ig gene lineage trees and their repertoires. Using simulations, we show that IgTreeZ can be reliably used for mutation and selection analyses. We used IgTreeZ on empirical data, found evidence for different mutation patterns in different B cell subpopulations, and gained insights into antigen-driven selection in corona virus disease 19 (COVID-19) patients. Most importantly, we show that including the CDR3 regions in selection analyses - which is only possible if these analyses are lineage tree-based - is crucial for obtaining correct results. Overall, we present a comprehensive lineage tree analysis tool that can reveal new biological insights into B cell repertoire dynamics.


Subject(s)
COVID-19 , Genes, Immunoglobulin , Humans , Immunoglobulin Variable Region/genetics , B-Lymphocytes , Clone Cells
3.
FEBS J ; 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2019260

ABSTRACT

The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.

4.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2010348

ABSTRACT

Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.

5.
Immunol Lett ; 249: 23-32, 2022 09.
Article in English | MEDLINE | ID: covidwho-2004148

ABSTRACT

B cell-mediated immune responses play important roles in controlling SARS-CoV infection. Here, we performed the single-cell B cell receptor sequencing (scBCR-seq) of the PBMC samples from eleven healthy controls, five asymptomatic subjects and 33 symptomatic COVID-19 patients with various clinical presentations, and subsequently analyzed the abundance and diversity of the BCR repertoires in different groups, respectively. We revealed the skewed usage of the IGHV, IGLV and IGKV genes and identified a number of heavy or light chain VDJ gene pairs and combinational preference in each group, such as IGKV3-7 and IGKV2-24 enriched in the asymptomatic subjects, whereas IGHV3-13, IGHV3-23-IGHJ4, IGHV1-18-IGLV3-19, IGHV1-18-IGLV3-21, and IGHV1-18-IGLV3-25 enriched in the recovery patients with severe diseases. We also observed the differential expression of IGHV3-23 in various B cell clusters by analysis of the scRNA-seq data. Additional dock analysis indicated that IGHV3-13 could bind to the spike protein of SARS-CoV-2. These findings may advance our understanding of the humoral immune responses in COVID-19 patients and help develop novel vaccine candidates as well as therapeutical antibodies against SASR-CoV-2 infections.


Subject(s)
COVID-19 , COVID-19/genetics , Humans , Leukocytes, Mononuclear , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
FEBS Open Bio ; 12(9): 1634-1643, 2022 09.
Article in English | MEDLINE | ID: covidwho-1958661

ABSTRACT

B cells recognize antigens via membrane-expressed B-cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS-CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher-frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.


Subject(s)
COVID-19 , RNA, Viral , Blood Volume , High-Throughput Nucleotide Sequencing/methods , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2
7.
Methods Mol Biol ; 2453: 297-316, 2022.
Article in English | MEDLINE | ID: covidwho-1935746

ABSTRACT

Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.


Subject(s)
Receptors, Immunologic , Software , Receptors, Immunologic/genetics
8.
Int Immunopharmacol ; 108: 108767, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1796627

ABSTRACT

It remains unclear whether immune responses following natural infection can be sustained or potentially prove critical for long-term immune protection against SARS-CoV-2 reinfection. Here, we systematically mapped the phenotypic landscape of SARS-CoV-2-specific immune responses in peripheral blood samples of convalescent patients with COVID-19 by single-cell RNA sequencing. The relative percentage of the CD8 + effector memory subset was increased in both convalescent moderate and severe cases, but NKT-CD160 and marginal zone B clusters were decreased. Innate immune responses were attenuated reflected by decreased expression of genes involved in interferon-gamma, leukocyte migration and neutrophil mediated immune response in convalescent COVID-19 patients. Functions of T cell were strengthened in convalescent COVID-19 patients by clear endorsement of increased expression of genes involved in biological processes of regulation of T cell activation, differentiation and cell-cell adhesion. In addition, T cell mediated immune responses were enhanced with remarkable clonal expansions of TCR and increased transition of CD4 + effector memory and CD8 + effector-GNLY in severe subjects. B cell immune responses displayed complicated and dualfunctions during convalescence of COVID-19, providing a novel mechanism that B cell activation was observed especially in moderate while humoral immune response was weakened. Interestingly, HLA class I genes displayed downregulation while HLA class II genes upregulation in both T and B cell subsets in convalescent individuals. Our results showed that innate immunity was declined but SARS-CoV-2-specific T cell responses were retained even strengthened whereas complicated and dualfunctions of B cells, including declined humoral immunity were presented at several months following infections.


Subject(s)
COVID-19 , Antibodies, Viral , Convalescence , Humans , Immunity, Humoral , SARS-CoV-2 , Sequence Analysis, RNA
9.
J Virol ; 96(4): e0160021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1759291

ABSTRACT

A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , B-Lymphocytes/immunology , COVID-19/genetics , Immunoglobulin G/genetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Immunoglobulin G/immunology , Receptors, Antigen, B-Cell/immunology
10.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
11.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1499900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged
12.
Heliyon ; 7(8): e07748, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1347618

ABSTRACT

BACKGROUND: Antibody production is one of the primary mechanisms for recovery from coronavirus disease 2019 (COVID-19). It is speculated that massive clonal expansion of B cells, which can produce clinically meaningful neutralizing antibodies, occurs in patients who recover on the timing of acquiring adaptive immunity. METHODS: To evaluate fluctuations in clonal B cells and the size of the clones, we chronologically assessed the B-cell receptor (BCR) repertoire in three patients with COVID-19 who recovered around 10 days after symptom onset. RESULTS: We focused on the three dominant clonotypes (top 3) in each individual. The percentage frequencies of the top 3 clonotypes increased rapidly and accounted for 27.8 % on day 9 in patient 1, 10.4 % on day 12 in patient 2, and 10.8 % on day 11 in patient 3, respectively. The frequencies of these top 3 clonotypes rapidly decreased as the patients' clinical symptoms improved. Furthermore, BCR network analysis revealed that accumulation of clusters composed of similar complementarity-determining region 3 (CDR3) sequences were rapidly formed, grew, and reached their maximum size around 10 days after symptom onset. CONCLUSIONS: BCR repertoire analysis revealed that a massive surge of some unique BCRs occurs during the acquisition of adaptive immunity and recovery. The peaks were more prominent than expected. These results provide insight into the important role of BCRs in the recovery from COVID-19 and raise the possibility of developing neutralizing antibodies as COVID-19 immunotherapy.

13.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: covidwho-1169921

ABSTRACT

A considerable fraction of B cells recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with germline-encoded elements of their B cell receptor, resulting in the production of neutralizing and nonneutralizing antibodies. We found that antibody sequences from different discovery cohorts shared biochemical properties and could be retrieved across validation cohorts, confirming the stereotyped character of this naive response in coronavirus disease 2019 (COVID-19). While neutralizing antibody sequences were found independently of disease severity, in line with serological data, individual nonneutralizing antibody sequences were associated with fatal clinical courses, suggesting detrimental effects of these antibodies. We mined 200 immune repertoires from healthy individuals and 500 repertoires from patients with blood or solid cancers - all acquired prior to the pandemic - for SARS-CoV-2 antibody sequences. While the largely unmutated B cell rearrangements occurred in a substantial fraction of immune repertoires from young and healthy individuals, these sequences were less likely to be found in individuals over 60 years of age and in those with cancer. This reflects B cell repertoire restriction in aging and cancer, and may to a certain extent explain the different clinical courses of COVID-19 observed in these risk groups. Future studies will have to address if this stereotyped B cell response to SARS-CoV-2 emerging from unmutated antibody rearrangements will create long-lived memory.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Gene Rearrangement, B-Lymphocyte , Immunologic Memory , SARS-CoV-2/immunology , Adult , Aged , COVID-19/epidemiology , Cohort Studies , Female , Humans , Male , Middle Aged
14.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1062273

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
15.
Cell Rep Med ; 2(2): 100192, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1033386

ABSTRACT

The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control) individuals (n = 39). Applying a machine learning approach to TCR beta (TRB) repertoire data, we can classify patient/control samples with a training sensitivity, specificity, and accuracy of 88.2%, 100%, and 96.4% and a testing sensitivity, specificity, and accuracy of 82.4%, 97.4%, and 92.9%, respectively. Interestingly, the same machine learning approach cannot separate SARS-CoV-2 recovered from SARS-CoV-2 infection-naive individual samples on the basis of B cell receptor (immunoglobulin heavy chain; IGH) repertoire data, suggesting that the T cell response to SARS-CoV-2 may be more stereotyped and longer lived. Following validation in larger cohorts, our method may be useful in detecting protective immunity acquired through natural infection or in determining the longevity of vaccine-induced immunity.


Subject(s)
COVID-19/immunology , Machine Learning , T-Lymphocytes/metabolism , Amino Acid Sequence , COVID-19/pathology , COVID-19/virology , Cluster Analysis , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , High-Throughput Nucleotide Sequencing , Humans , Principal Component Analysis , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , T-Lymphocytes/immunology
17.
Front Immunol ; 11: 582010, 2020.
Article in English | MEDLINE | ID: covidwho-886168

ABSTRACT

Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR) repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset of severe disease but recovered during the convalescent stage. Monitoring TCR repertoires could serve as an indicative biomarker to predict disease progression and recovery. Panoramic concurrent assessment of BCR repertoires demonstrated isotype switching and a transient but dramatic early IgA expansion. Dominant B cell clonal expansion with decreased diversity occurred following recovery from infection. Profound changes in T cell homeostasis raise critical questions about the early events in COVID-19 infection and demonstrate that immune repertoire analysis is a promising method for evaluating emergent host immunity to SARS-CoV-2 viral infection, with great implications for assessing vaccination and other immunological therapies.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , CD4 Lymphocyte Count , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL